The behavioral biometric of Keystroke Dynamics uses the manner and rhythm in which an individual types characters on a keyboard or keypad.[2][3][4] The keystroke rhythms of a user are measured to develop a unique biometric template of the user's typing pattern for future authentication.[5] Raw measurements available from almost every keyboard can be recorded to determine Dwell time (the time a key pressed) and Flight time (the time between "key up" and the next "key down"). The recorded keystroke timing data is then processed through a unique neural algorithm, which determines a primary pattern for future comparison.[6] Similarly, vibration information may be used to create a pattern for future use in both identification and authentication tasks.
Data needed to analyze keystroke dynamics is obtained by keystroke logging. Normally, all that is retained when logging a typing session is the sequence of characters corresponding to the order in which keys were pressed and timing information is discarded. When reading email, the receiver cannot tell from reading the phrase "I saw 3 zebras!" whether:
Data needed to analyze keystroke dynamics is obtained by keystroke logging. Normally, all that is retained when logging a typing session is the sequence of characters corresponding to the order in which keys were pressed and timing information is discarded. When reading email, the receiver cannot tell from reading the phrase "I saw 3 zebras!" whether:
- that was typed rapidly or slowly
- the sender used the left shift key, the right shift key, or the caps-lock key to make the "i" turn into a capitalized letter "I"
- the letters were all typed at the same pace, or if there was a long pause before the letter "z" or the numeral "3" while you were looking for that letter
- the sender typed any letters wrong initially and then went back and corrected them, or if they got them right the first time
No comments:
Post a Comment