Increases in global mean surface temperature are projected to result in continued permafrost degradation and coastal degradation (high confidence), increased wildfire, decreased crop yields in low latitudes, decreased food stability, decreased water availability, vegetation loss (medium confidence), decreased access to food and increased soil erosion (low confidence). There is high agreement and high evidence that increases in global mean temperature will result in continued increase in global vegetation loss, coastal degradation, as well as decreased crop yields in low latitudes, decreased food stability, decreased access to food and nutrition, and medium confidence in continued permafrost degradation and water scarcity in drylands. Impacts are already observed across all components (high confidence). Some processes may experience irreversible impacts at lower levels of warming than others. There are high risks from permafrost degradation, and wildfire, coastal degradation, stability of food systems at 1.5°C while high risks from soil erosion, vegetation loss and changes in nutrition only occur at higher temperature thresholds due to increased possibility for adaptation (medium confidence).
These changes result in compound risks to food systems, human and ecosystem health, livelihoods, the viability of infrastructure, and the value of land (high confidence). The experience and dynamics of risk change over time as a result of both human and natural processes (high confidence). There is high confidence that climate and land changes pose increased risks at certain periods of life (i.e., to the very young and ageing populations) as well as sustained risk to those living in poverty. Response options may also increase risks. For example, domestic efforts to insulate populations from food price spikes associated with climatic stressors in the mid-2000s inadequately prevented food insecurity and poverty, and worsened poverty globally.
No comments:
Post a Comment